Serveur d'exploration sur Mozart

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models

Identifieur interne : 000130 ( PascalFrancis/Corpus ); précédent : 000129; suivant : 000131

Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models

Auteurs : Olaf Stein ; Jochen Rudolph

Source :

RBID : Pascal:07-0406967

Descripteurs français

English descriptors

Abstract

[1] Model calculations with two global 3D-CTMs (GISS and MOZART-2) in which we introduced ethane stable carbon isotopic ratios were performed. In both models, emission inventories based on the EDGAR database are used for VOC emissions. We considered source specific isotope fractionations and included global emissions from C3 and C4 plants which differ significantly in isotope ratio. Comparison of the model results with observation strongly indicates that the EDGAR emission inventory underestimates global ethane emissions by a factor of approximately 1.5. On the basis of the latitude-dependent differences between model predictions and the atmospheric observations of ethane reported by Rudolph (1995), estimates of magnitude and latitude range of sources missing in current emission inventories are made. However, the concentration data alone provide only limited constraints on the geographical distribution and only indirect information about the type of the missing sources. Isotope ratio studies can be very valuable to obtain additional insight. To study the dependence between the geographical distribution of the emissions and atmospheric ethane concentrations and isotope ratios, MOZART-2 model calculations were made where all emissions are concentrated in latitude bands as well as in specified regions. Two regimes can be distinguished on a global scale: In the source latitude band, dilution with background air explains most of the calculated concentration variation, while at latitudes farther away from the sources, chemical loss is the dominating process.

Notice en format standard (ISO 2709)

Pour connaître la documentation sur le format Inist Standard.

pA  
A01 01  1    @0 0148-0227
A03   1    @0 J. geophys. res.
A05       @2 112
A06       @2 D14
A08 01  1  ENG  @1 Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models
A11 01  1    @1 STEIN (Olaf)
A11 02  1    @1 RUDOLPH (Jochen)
A14 01      @1 Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich @2 Jülich @3 DEU @Z 1 aut. @Z 2 aut.
A14 02      @1 Max Planck Institute for Meteorology @2 Hamburg @3 DEU @Z 1 aut.
A14 03      @1 Centre for Atmospheric Chemistry, Chemistry Department, York University @2 Toronto, Ontario @3 CAN @Z 2 aut.
A20       @2 D14308.1-D14308.18
A21       @1 2007
A23 01      @0 ENG
A43 01      @1 INIST @2 3144 @5 354000150074620330
A44       @0 0000 @1 © 2007 INIST-CNRS. All rights reserved.
A45       @0 3/4 p.
A47 01  1    @0 07-0406967
A60       @1 P
A61       @0 A
A64 01  1    @0 Journal of geophysical research
A66 01      @0 USA
C01 01    ENG  @0 [1] Model calculations with two global 3D-CTMs (GISS and MOZART-2) in which we introduced ethane stable carbon isotopic ratios were performed. In both models, emission inventories based on the EDGAR database are used for VOC emissions. We considered source specific isotope fractionations and included global emissions from C3 and C4 plants which differ significantly in isotope ratio. Comparison of the model results with observation strongly indicates that the EDGAR emission inventory underestimates global ethane emissions by a factor of approximately 1.5. On the basis of the latitude-dependent differences between model predictions and the atmospheric observations of ethane reported by Rudolph (1995), estimates of magnitude and latitude range of sources missing in current emission inventories are made. However, the concentration data alone provide only limited constraints on the geographical distribution and only indirect information about the type of the missing sources. Isotope ratio studies can be very valuable to obtain additional insight. To study the dependence between the geographical distribution of the emissions and atmospheric ethane concentrations and isotope ratios, MOZART-2 model calculations were made where all emissions are concentrated in latitude bands as well as in specified regions. Two regimes can be distinguished on a global scale: In the source latitude band, dilution with background air explains most of the calculated concentration variation, while at latitudes farther away from the sources, chemical loss is the dominating process.
C02 01  2    @0 220
C02 02  3    @0 001E
C02 03  2    @0 001E01
C03 01  X  FRE  @0 Modélisation @5 01
C03 01  X  ENG  @0 Modeling @5 01
C03 01  X  SPA  @0 Modelización @5 01
C03 02  2  FRE  @0 Interprétation @5 02
C03 02  2  ENG  @0 interpretation @5 02
C03 02  2  SPA  @0 Interpretación @5 02
C03 03  3  FRE  @0 Carbone isotope @5 03
C03 03  3  ENG  @0 Carbon isotopes @5 03
C03 04  2  FRE  @0 Rapport isotopique @5 04
C03 04  2  ENG  @0 isotope ratios @5 04
C03 05  X  FRE  @0 Composition isotopique @5 05
C03 05  X  ENG  @0 Isotopic composition @5 05
C03 05  X  SPA  @0 Composición isotópica @5 05
C03 06  2  FRE  @0 Ethane @5 06
C03 06  2  ENG  @0 ethane @5 06
C03 06  2  SPA  @0 Etano @5 06
C03 07  2  FRE  @0 Monde @5 07
C03 07  2  ENG  @0 global @5 07
C03 07  2  SPA  @0 Mundo @5 07
C03 08  2  FRE  @0 Transport @5 08
C03 08  2  ENG  @0 transport @5 08
C03 08  2  SPA  @0 Transporte @5 08
C03 09  2  FRE  @0 Modèle 3 dimensions @5 09
C03 09  2  ENG  @0 three-dimensional models @5 09
C03 09  2  SPA  @0 Modelo 3 dimensiones @5 09
C03 10  2  FRE  @0 Système information géographique @5 10
C03 10  2  ENG  @0 geographic information systems @5 10
C03 11  2  FRE  @0 Inventaire @5 11
C03 11  2  ENG  @0 inventory @5 11
C03 11  2  SPA  @0 Inventario @5 11
C03 12  2  FRE  @0 Base donnée @5 12
C03 12  2  ENG  @0 data bases @5 12
C03 12  2  SPA  @0 Base dato @5 12
C03 13  2  FRE  @0 Fractionnement isotopique @5 13
C03 13  2  ENG  @0 isotope fractionation @5 13
C03 13  2  SPA  @0 Fraccionamiento isotópico @5 13
C03 14  2  FRE  @0 Latitude @5 14
C03 14  2  ENG  @0 latitude @5 14
C03 15  X  FRE  @0 Modèle prévision @5 15
C03 15  X  ENG  @0 Forecast model @5 15
C03 15  X  SPA  @0 Modelo previsión @5 15
C03 16  2  FRE  @0 Courant @5 16
C03 16  2  ENG  @0 currents @5 16
C03 17  2  FRE  @0 Concentration @5 17
C03 17  2  ENG  @0 concentration @5 17
C03 17  2  SPA  @0 Concentración @5 17
C03 18  X  FRE  @0 Répartition géographique @5 18
C03 18  X  ENG  @0 Geographic distribution @5 18
C03 18  X  SPA  @0 Distribución geográfica @5 18
C03 19  X  FRE  @0 Echelle planétaire @5 19
C03 19  X  ENG  @0 Planetary scale @5 19
C03 19  X  SPA  @0 Escala planetaria @5 19
C03 20  2  FRE  @0 Dilution @5 20
C03 20  2  ENG  @0 dilution @5 20
C03 20  2  SPA  @0 Dilución @5 20
C03 21  2  FRE  @0 Air @5 21
C03 21  2  ENG  @0 air @5 21
N21       @1 260
N44 01      @1 OTO
N82       @1 OTO

Format Inist (serveur)

NO : PASCAL 07-0406967 INIST
ET : Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models
AU : STEIN (Olaf); RUDOLPH (Jochen)
AF : Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich/Jülich/Allemagne (1 aut., 2 aut.); Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut.); Centre for Atmospheric Chemistry, Chemistry Department, York University/Toronto, Ontario/Canada (2 aut.)
DT : Publication en série; Niveau analytique
SO : Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2007; Vol. 112; No. D14; D14308.1-D14308.18; Bibl. 3/4 p.
LA : Anglais
EA : [1] Model calculations with two global 3D-CTMs (GISS and MOZART-2) in which we introduced ethane stable carbon isotopic ratios were performed. In both models, emission inventories based on the EDGAR database are used for VOC emissions. We considered source specific isotope fractionations and included global emissions from C3 and C4 plants which differ significantly in isotope ratio. Comparison of the model results with observation strongly indicates that the EDGAR emission inventory underestimates global ethane emissions by a factor of approximately 1.5. On the basis of the latitude-dependent differences between model predictions and the atmospheric observations of ethane reported by Rudolph (1995), estimates of magnitude and latitude range of sources missing in current emission inventories are made. However, the concentration data alone provide only limited constraints on the geographical distribution and only indirect information about the type of the missing sources. Isotope ratio studies can be very valuable to obtain additional insight. To study the dependence between the geographical distribution of the emissions and atmospheric ethane concentrations and isotope ratios, MOZART-2 model calculations were made where all emissions are concentrated in latitude bands as well as in specified regions. Two regimes can be distinguished on a global scale: In the source latitude band, dilution with background air explains most of the calculated concentration variation, while at latitudes farther away from the sources, chemical loss is the dominating process.
CC : 220; 001E; 001E01
FD : Modélisation; Interprétation; Carbone isotope; Rapport isotopique; Composition isotopique; Ethane; Monde; Transport; Modèle 3 dimensions; Système information géographique; Inventaire; Base donnée; Fractionnement isotopique; Latitude; Modèle prévision; Courant; Concentration; Répartition géographique; Echelle planétaire; Dilution; Air
ED : Modeling; interpretation; Carbon isotopes; isotope ratios; Isotopic composition; ethane; global; transport; three-dimensional models; geographic information systems; inventory; data bases; isotope fractionation; latitude; Forecast model; currents; concentration; Geographic distribution; Planetary scale; dilution; air
SD : Modelización; Interpretación; Composición isotópica; Etano; Mundo; Transporte; Modelo 3 dimensiones; Inventario; Base dato; Fraccionamiento isotópico; Modelo previsión; Concentración; Distribución geográfica; Escala planetaria; Dilución
LO : INIST-3144.354000150074620330
ID : 07-0406967

Links to Exploration step

Pascal:07-0406967

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models</title>
<author>
<name sortKey="Stein, Olaf" sort="Stein, Olaf" uniqKey="Stein O" first="Olaf" last="Stein">Olaf Stein</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rudolph, Jochen" sort="Rudolph, Jochen" uniqKey="Rudolph J" first="Jochen" last="Rudolph">Jochen Rudolph</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Centre for Atmospheric Chemistry, Chemistry Department, York University</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">INIST</idno>
<idno type="inist">07-0406967</idno>
<date when="2007">2007</date>
<idno type="stanalyst">PASCAL 07-0406967 INIST</idno>
<idno type="RBID">Pascal:07-0406967</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000130</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en" level="a">Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models</title>
<author>
<name sortKey="Stein, Olaf" sort="Stein, Olaf" uniqKey="Stein O" first="Olaf" last="Stein">Olaf Stein</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="02">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
<author>
<name sortKey="Rudolph, Jochen" sort="Rudolph, Jochen" uniqKey="Rudolph J" first="Jochen" last="Rudolph">Jochen Rudolph</name>
<affiliation>
<inist:fA14 i1="01">
<s1>Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
<affiliation>
<inist:fA14 i1="03">
<s1>Centre for Atmospheric Chemistry, Chemistry Department, York University</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
</affiliation>
</author>
</analytic>
<series>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
<imprint>
<date when="2007">2007</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<title level="j" type="main">Journal of geophysical research</title>
<title level="j" type="abbreviated">J. geophys. res.</title>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Carbon isotopes</term>
<term>Forecast model</term>
<term>Geographic distribution</term>
<term>Isotopic composition</term>
<term>Modeling</term>
<term>Planetary scale</term>
<term>air</term>
<term>concentration</term>
<term>currents</term>
<term>data bases</term>
<term>dilution</term>
<term>ethane</term>
<term>geographic information systems</term>
<term>global</term>
<term>interpretation</term>
<term>inventory</term>
<term>isotope fractionation</term>
<term>isotope ratios</term>
<term>latitude</term>
<term>three-dimensional models</term>
<term>transport</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Modélisation</term>
<term>Interprétation</term>
<term>Carbone isotope</term>
<term>Rapport isotopique</term>
<term>Composition isotopique</term>
<term>Ethane</term>
<term>Monde</term>
<term>Transport</term>
<term>Modèle 3 dimensions</term>
<term>Système information géographique</term>
<term>Inventaire</term>
<term>Base donnée</term>
<term>Fractionnement isotopique</term>
<term>Latitude</term>
<term>Modèle prévision</term>
<term>Courant</term>
<term>Concentration</term>
<term>Répartition géographique</term>
<term>Echelle planétaire</term>
<term>Dilution</term>
<term>Air</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">[1] Model calculations with two global 3D-CTMs (GISS and MOZART-2) in which we introduced ethane stable carbon isotopic ratios were performed. In both models, emission inventories based on the EDGAR database are used for VOC emissions. We considered source specific isotope fractionations and included global emissions from C3 and C4 plants which differ significantly in isotope ratio. Comparison of the model results with observation strongly indicates that the EDGAR emission inventory underestimates global ethane emissions by a factor of approximately 1.5. On the basis of the latitude-dependent differences between model predictions and the atmospheric observations of ethane reported by Rudolph (1995), estimates of magnitude and latitude range of sources missing in current emission inventories are made. However, the concentration data alone provide only limited constraints on the geographical distribution and only indirect information about the type of the missing sources. Isotope ratio studies can be very valuable to obtain additional insight. To study the dependence between the geographical distribution of the emissions and atmospheric ethane concentrations and isotope ratios, MOZART-2 model calculations were made where all emissions are concentrated in latitude bands as well as in specified regions. Two regimes can be distinguished on a global scale: In the source latitude band, dilution with background air explains most of the calculated concentration variation, while at latitudes farther away from the sources, chemical loss is the dominating process.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0148-0227</s0>
</fA01>
<fA03 i2="1">
<s0>J. geophys. res.</s0>
</fA03>
<fA05>
<s2>112</s2>
</fA05>
<fA06>
<s2>D14</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>STEIN (Olaf)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>RUDOLPH (Jochen)</s1>
</fA11>
<fA14 i1="01">
<s1>Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich</s1>
<s2>Jülich</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Max Planck Institute for Meteorology</s1>
<s2>Hamburg</s2>
<s3>DEU</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Centre for Atmospheric Chemistry, Chemistry Department, York University</s1>
<s2>Toronto, Ontario</s2>
<s3>CAN</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s2>D14308.1-D14308.18</s2>
</fA20>
<fA21>
<s1>2007</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>3144</s2>
<s5>354000150074620330</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2007 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>3/4 p.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>07-0406967</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of geophysical research</s0>
</fA64>
<fA66 i1="01">
<s0>USA</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>[1] Model calculations with two global 3D-CTMs (GISS and MOZART-2) in which we introduced ethane stable carbon isotopic ratios were performed. In both models, emission inventories based on the EDGAR database are used for VOC emissions. We considered source specific isotope fractionations and included global emissions from C3 and C4 plants which differ significantly in isotope ratio. Comparison of the model results with observation strongly indicates that the EDGAR emission inventory underestimates global ethane emissions by a factor of approximately 1.5. On the basis of the latitude-dependent differences between model predictions and the atmospheric observations of ethane reported by Rudolph (1995), estimates of magnitude and latitude range of sources missing in current emission inventories are made. However, the concentration data alone provide only limited constraints on the geographical distribution and only indirect information about the type of the missing sources. Isotope ratio studies can be very valuable to obtain additional insight. To study the dependence between the geographical distribution of the emissions and atmospheric ethane concentrations and isotope ratios, MOZART-2 model calculations were made where all emissions are concentrated in latitude bands as well as in specified regions. Two regimes can be distinguished on a global scale: In the source latitude band, dilution with background air explains most of the calculated concentration variation, while at latitudes farther away from the sources, chemical loss is the dominating process.</s0>
</fC01>
<fC02 i1="01" i2="2">
<s0>220</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001E</s0>
</fC02>
<fC02 i1="03" i2="2">
<s0>001E01</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Modélisation</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Modeling</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Modelización</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="2" l="FRE">
<s0>Interprétation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="ENG">
<s0>interpretation</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="2" l="SPA">
<s0>Interpretación</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Carbone isotope</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Carbon isotopes</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="2" l="FRE">
<s0>Rapport isotopique</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="2" l="ENG">
<s0>isotope ratios</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Composition isotopique</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Isotopic composition</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Composición isotópica</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="2" l="FRE">
<s0>Ethane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="ENG">
<s0>ethane</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="2" l="SPA">
<s0>Etano</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="2" l="FRE">
<s0>Monde</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="ENG">
<s0>global</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="2" l="SPA">
<s0>Mundo</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="2" l="FRE">
<s0>Transport</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="ENG">
<s0>transport</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="2" l="SPA">
<s0>Transporte</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="2" l="FRE">
<s0>Modèle 3 dimensions</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="ENG">
<s0>three-dimensional models</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="2" l="SPA">
<s0>Modelo 3 dimensiones</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="2" l="FRE">
<s0>Système information géographique</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="2" l="ENG">
<s0>geographic information systems</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="2" l="FRE">
<s0>Inventaire</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="ENG">
<s0>inventory</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="2" l="SPA">
<s0>Inventario</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="2" l="FRE">
<s0>Base donnée</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="ENG">
<s0>data bases</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="2" l="SPA">
<s0>Base dato</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="2" l="FRE">
<s0>Fractionnement isotopique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="ENG">
<s0>isotope fractionation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="2" l="SPA">
<s0>Fraccionamiento isotópico</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="2" l="FRE">
<s0>Latitude</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="2" l="ENG">
<s0>latitude</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Modèle prévision</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Forecast model</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Modelo previsión</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="2" l="FRE">
<s0>Courant</s0>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="2" l="ENG">
<s0>currents</s0>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="2" l="FRE">
<s0>Concentration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="ENG">
<s0>concentration</s0>
<s5>17</s5>
</fC03>
<fC03 i1="17" i2="2" l="SPA">
<s0>Concentración</s0>
<s5>17</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Répartition géographique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Geographic distribution</s0>
<s5>18</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Distribución geográfica</s0>
<s5>18</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>Echelle planétaire</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="ENG">
<s0>Planetary scale</s0>
<s5>19</s5>
</fC03>
<fC03 i1="19" i2="X" l="SPA">
<s0>Escala planetaria</s0>
<s5>19</s5>
</fC03>
<fC03 i1="20" i2="2" l="FRE">
<s0>Dilution</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="ENG">
<s0>dilution</s0>
<s5>20</s5>
</fC03>
<fC03 i1="20" i2="2" l="SPA">
<s0>Dilución</s0>
<s5>20</s5>
</fC03>
<fC03 i1="21" i2="2" l="FRE">
<s0>Air</s0>
<s5>21</s5>
</fC03>
<fC03 i1="21" i2="2" l="ENG">
<s0>air</s0>
<s5>21</s5>
</fC03>
<fN21>
<s1>260</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
<server>
<NO>PASCAL 07-0406967 INIST</NO>
<ET>Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models</ET>
<AU>STEIN (Olaf); RUDOLPH (Jochen)</AU>
<AF>Institut für Chemie und Dynamik der Geosphare-2: Troposphäre, Forschungszentrum Jülich/Jülich/Allemagne (1 aut., 2 aut.); Max Planck Institute for Meteorology/Hamburg/Allemagne (1 aut.); Centre for Atmospheric Chemistry, Chemistry Department, York University/Toronto, Ontario/Canada (2 aut.)</AF>
<DT>Publication en série; Niveau analytique</DT>
<SO>Journal of geophysical research; ISSN 0148-0227; Etats-Unis; Da. 2007; Vol. 112; No. D14; D14308.1-D14308.18; Bibl. 3/4 p.</SO>
<LA>Anglais</LA>
<EA>[1] Model calculations with two global 3D-CTMs (GISS and MOZART-2) in which we introduced ethane stable carbon isotopic ratios were performed. In both models, emission inventories based on the EDGAR database are used for VOC emissions. We considered source specific isotope fractionations and included global emissions from C3 and C4 plants which differ significantly in isotope ratio. Comparison of the model results with observation strongly indicates that the EDGAR emission inventory underestimates global ethane emissions by a factor of approximately 1.5. On the basis of the latitude-dependent differences between model predictions and the atmospheric observations of ethane reported by Rudolph (1995), estimates of magnitude and latitude range of sources missing in current emission inventories are made. However, the concentration data alone provide only limited constraints on the geographical distribution and only indirect information about the type of the missing sources. Isotope ratio studies can be very valuable to obtain additional insight. To study the dependence between the geographical distribution of the emissions and atmospheric ethane concentrations and isotope ratios, MOZART-2 model calculations were made where all emissions are concentrated in latitude bands as well as in specified regions. Two regimes can be distinguished on a global scale: In the source latitude band, dilution with background air explains most of the calculated concentration variation, while at latitudes farther away from the sources, chemical loss is the dominating process.</EA>
<CC>220; 001E; 001E01</CC>
<FD>Modélisation; Interprétation; Carbone isotope; Rapport isotopique; Composition isotopique; Ethane; Monde; Transport; Modèle 3 dimensions; Système information géographique; Inventaire; Base donnée; Fractionnement isotopique; Latitude; Modèle prévision; Courant; Concentration; Répartition géographique; Echelle planétaire; Dilution; Air</FD>
<ED>Modeling; interpretation; Carbon isotopes; isotope ratios; Isotopic composition; ethane; global; transport; three-dimensional models; geographic information systems; inventory; data bases; isotope fractionation; latitude; Forecast model; currents; concentration; Geographic distribution; Planetary scale; dilution; air</ED>
<SD>Modelización; Interpretación; Composición isotópica; Etano; Mundo; Transporte; Modelo 3 dimensiones; Inventario; Base dato; Fraccionamiento isotópico; Modelo previsión; Concentración; Distribución geográfica; Escala planetaria; Dilución</SD>
<LO>INIST-3144.354000150074620330</LO>
<ID>07-0406967</ID>
</server>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Musique/explor/MozartV1/Data/PascalFrancis/Corpus
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000130 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/PascalFrancis/Corpus/biblio.hfd -nk 000130 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Musique
   |area=    MozartV1
   |flux=    PascalFrancis
   |étape=   Corpus
   |type=    RBID
   |clé=     Pascal:07-0406967
   |texte=   Modeling and interpretation of stable carbon isotope ratios of ethane in global chemical transport models
}}

Wicri

This area was generated with Dilib version V0.6.20.
Data generation: Sun Apr 10 15:06:14 2016. Site generation: Tue Feb 7 15:40:35 2023